A generalized discrepancy and quadrature error bound

نویسنده

  • Fred J. Hickernell
چکیده

An error bound for multidimensional quadrature is derived that includes the Koksma-Hlawka inequality as a special case. This error bound takes the form of a product of two terms. One term, which depends only on the integrand, is defined as a generalized variation. The other term, which depends only on the quadrature rule, is defined as a generalized discrepancy. The generalized discrepancy is a figure of merit for quadrature rules and includes as special cases the Lp-star discrepancy and Pα that arises in the study of lattice rules.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

FUZZY INTEGRO-DIFFERENTIAL EQUATIONS: DISCRETE SOLUTION AND ERROR ESTIMATION

This paper investigates existence and uniqueness results for the first order fuzzy integro-differential equations. Then numerical results and error bound based on the left rectangular quadrature rule, trapezoidal rule and a hybrid of them are obtained. Finally an example is given to illustrate the performance of the methods.

متن کامل

The error bounds and tractability of quasi-Monte Carlo algorithms in infinite dimension

Dimensionally unbounded problems are frequently encountered in practice, such as in simulations of stochastic processes, in particle and light transport problems and in the problems of mathematical finance. This paper considers quasi-Monte Carlo integration algorithms for weighted classes of functions of infinitely many variables, in which the dependence of functions on successive variables is ...

متن کامل

An error analysis of two related quadrature methods for computing zeros of analytic functions, Part II

We consider the quadrature method developed by Kravanja, Sakurai and Van Barel (BIT 39 (1999), no. 4, 646–682) for computing all the zeros of an analytic function that lie inside the unit circle. A new perturbation result for generalized eigenvalue problems allows us to obtain a detailed upper bound for the error between the zeros and their approximations. To the best of our knowledge, it is th...

متن کامل

Generalized Differential Quadrature Method for Vibration Analysis of Cantilever Trapezoidal FG Thick Plate

This paper presents a numerical solution for vibration analysis of a cantilever trapezoidal thick plate. The material of the plate is considered to be graded through the thickness from a metal surface to a ceramic one according to a power law function. Kinetic and strain energies are derived based on the Reissner-Mindlin theory for thick plates and using Hamilton's principle, the governing equa...

متن کامل

Generalized averaged Szegő quadrature rules

Szegő quadrature rules are commonly applied to integrate periodic functions on the unit circle in the complex plane. However, often it is difficult to determine the quadrature error. Recently, Spalević introduced generalized averaged Gauss quadrature rules for estimating the quadrature error obtained when applying Gauss quadrature over an interval on the real axis. We describe analogous quadrat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Math. Comput.

دوره 67  شماره 

صفحات  -

تاریخ انتشار 1998